If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10k^2+5k-30=0
a = 10; b = 5; c = -30;
Δ = b2-4ac
Δ = 52-4·10·(-30)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-35}{2*10}=\frac{-40}{20} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+35}{2*10}=\frac{30}{20} =1+1/2 $
| 1+5r-1+r=-18 | | n+216=-502 | | 2(4x-29)=(x-17) | | w/8=432 | | 7m-6=5M+10 | | -5(x+9=105. | | -5-5(5x+1)=-4x-31 | | 7m–6=5m+10 | | 3(2x+5)=9x+6-3x+9 | | 3/8a=-12 | | 7m–6=5m+10 | | Y21=x7 | | 2/5h-7=12/5=2h+3 | | 12x+34x=5-2.5x | | 25/x=55/77 | | 60x-18=6(10x-3) | | 39-3xx=10 | | 3(4x-8)=15x(35x+30) | | 7y-(3y-8)=20 | | p/2+11=20 | | 5x+30x-8=7(5x+8) | | 12=2k—8 | | 5(g-85)=10 | | 5(4-x)=-3+- | | 14+0.98p=19+0.78p | | 4b^2−4b+7=6 | | 6c-1=5 | | 16y+8-4=44 | | 75=-3(-6f-5) | | 1/2(4-6x)=23 | | 27x+78=27x+11 | | 1(4-x)=-3+-1 |